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A new method is studied for finding the molecular orbitals which minimize the energy of
an LCAO-MO wavefunction. The method makes use of successive rotations of pairs of orbitals.
Tt can be applied to multi-determinant as well as to single-determinant wavefunctions. Criteria
are found to minimize excited states.

Une nouvelle méthode est étudiée ici pour trouver les orbitales moléculaires qui mini-
misent I’énergie d’une fonction d’onde LCAO-MO. La méthode utilise des rotations successives
de couples d’orbitales. La méthode peut minimiser aussi des fonctions d’onde multi-déter-
minantales et les états excités.

Es wird eine neue Methode zur Bestimmung der M.O.s nach dem Kriterium minimaler
Gesamtenergie beschrieben. Dabei werden jeweils zwei M.O.s sukzessive transformiert. Das
Verfahren bleibt auch dann anwendbar, wenn fiir die Zustandsfunktion eine Linearkombina-
tion von HS-Determinanten angesetzt wird. Zum Schlufl werden noch einige Kriterien fiir die
Bestimmung von angeregten Zustiinden angegeben.

Introduction

The problem of minimizing the energy of an LCAO-MO single determinant
wavefunction by variation of the coefficients was solved in 1951 [7] for the first
time for a closed shell ground state. The coefficients can be found solving by
numerical methods the Roothaan equations, which are an application to LCAO-
MO wave functions of the Hartree-Fock equations [£]. The so-called ‘“unrestricted”
open shell wave functions [I, 5] can be treated in a similar way, considering
separately electrons with opposed spin.

In 1960 [6] the way of extending the method to singly and doubly filled open
shell wave functions was found. The possibility of operating on density matrices
instead of on molecular orbitals was studied also [3].

In Roothaan equations the m. o. are eigenfunctions of an operator ¥ depending
itself on the m. o. From a starting set of m. o. IT° a sequence /1%, I1%,... can be
obtained where the ITi+! are eigenvectors of an F' built with /7% If the sequence
converges to a limit JT* this set is the solution of the Roothaan equations. Energy
not always is lowered passing from II? to I[¢+l: convergence generally can be
reached only if I7° has been choosen near enough to the unknown I7*.

The most important feature of the new method we shall expose here is that
it minimizes directly the energy, without using the condition d& = 0 (that is
without passing through Roothaan equations), so that convergence is always
reached, independently from the choice of I7°.
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The Method

I. Tet us consider a set of n atomic orbitals™ y;, y,, ... xn and a set IT° of n
orthonormal molecular orbitals where 7{ = 3 ¢ ;. In m. o. theory the wave

function is represented by an antisymmetrized product of m. o. (with spin part),
that we shall write briefly:

D=|m7y... 7|
(where the vertical bars indicate antisymmetrisation and normalisation, the bars
over the 7 indicate spin & and no bar indicate spin  and position p in the product
indicates electron p).

The wavefunction may also be a linear combination of two or more Slater
determinants (triplet or singlet excited states, projected ‘“‘unrestricted” m. o.
wavefunctions and so on).

In all cases the energy depends on coefficients ¢f; which are the elements of a
matrix C°. This matrix can be now modified by a rotation of rows ‘e’ and ‘¥,
corresponding to the rotation of the orbitals 2 and 7):

Ty = cosq @Y+ sinpa)
7y = —sin @ 7y + cos ¢ 7 .

Using this new matrix (" the energy is a function of ¢ and by numerical or, when
possible, by analitycal methods we can find the point corresponding to the lowest
energy, @min- In the new set of orbitals defined by @min & new pair of orbitals may
be choosen and rotated to reach the bottom of the energy well and so on, for all
possible pairs. The whole cycle will be repeated many times as long as convergence
is obtained, that is when further rotation of orbitals cannot lower the energy
again**.

Rotating orbitals has an useful feature: replacing some orbitals in a Slater
determinant with a linear combination of other orbitals, a row of the determinant
becomes a combination of rows and the determinant a combination of determi-
nants.

For instance

D= |(umy + o)y .. o | = |y 7y o |+ 0 [Ty | (1)

or (remembering that a determinant with two equal rows is zero and that the
exchange of rows is equivalent to a change of sign)

D = | (um, +v7y) (w7w; + 07T,) (— 070 -+ uy) (— 07wy + uzy) | = | 70y 74 70 70, )

In this way, in most cases, we may expand the wave function after two or more
rotations as a linear combination of wave functions in the starting orbitals. This
fact will be useful in dealing with excited states, but also to understand some
important features of the ground state and give help in calculations.

* We shall speak always of atomic orbitals and m. o. but all we shall say is also valid, of
course, for each set of linearly independent analytical functions y; and for each set of ortho-
normal functions 7z; obtained by a linear combination of the y;.

** If the y: are orthonormal (if they are not so, they can always be orthonormalised),
instead of rotating rows of C? it is possible to rotate columns without breaking orthonormality
of the s:. Of course the rotation of columns does not correspond to rotation of orbitals and
this is the advantage which induces us to prefere the first way of minimizing the energy.
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I1.1t can be shown that the set of final molecular orbitals IT* found with the
method of rotations, satisfies also the condition dE = 0. Indeed, let us express the
energy (instead of as a function of the coefficients) as a function of the parameters
P Po - Py defining the successive rotations of each of the (£) pairs of orbitals.

If this successive rotations are defined starting from the set I7*, we have that in

the point ¢, =@y = ... =@ =0 the partial derivatives al’; ;fi). =0 (i=1,

2, .., (D)

111. Ground states. A closed shell ground state is represented by a single
determinant, where m molecular orbitals are doubly filled with electrons with
opposed spin: Pg = |7ty 7Ty 7y Wy - - . Tm Tom |

A rotation of two doubly filled orbitals does not change the determinant
(see the example 2 in section II), so that the only rotations to do are those of a
filled ot and an empty 7 m. o.

Expanding in the old orbitals we have:

D¢ () = cos® p D¢ (0) + )/2 sin @ cos ¢ D (0) + sin? p Dp (0)

where @p (0) is the diexcited configuration with two electrons lifted from =z, to
sty and Pg (0) is the corresponding monoexcited singlet configuration.

As we see the rotation of orbitals is not equivalent to configuration interac-
tion of @ and D (as it would happen with m, singly filled) but an indirect rela-
tion exists, because the C. I. matrix element between @¢ and P is zero in gy
(see Appendix I). With the final set I7* all matrix elements with excited states are
zero. This is not surprising because, from what was said in section II follows that
the Brillouin theorem (7) must be also valid here (in fact the m. o. we find are also
solution of the Hartree-Fock equations).

In Appendix I some useful relations among the functions G (), D (p), E (),
GD (¢), DE (p) are listed (see App. I for the meaning of these notations). These
relations allow alternative ways for finding the minimum point @uix.

When the energy depends on products of order four of sin ¢ and cos ¢ like in
closed shell ground states (see App. I) a numerical method is necessary to find
@min- On the contrary an analytical solution is possible when this dependence is of
order two (as happens rotating a singly filled with an empty m. o.).

1V. Symmetry. The existence of symmetry lowers the number of rotations to do.
For instance the fact that, in closed shell and in “unrestricted” m. o. ground
states, the matrix elements.between the ground state and the monoexcited state
are zero if m, and mp have different symmetry means that a rotation cannot lower
the energy and gmin = 0.

V. An example. Calculations on an IBM electronic computer were done w1th
our method. In the table an example (benzyl radical) is given. An “unrestricted”
m. o. wave function (1, 5) was used for 7 electrons of the radical. The functions
i are here the seven p, atomic orbitals on carbon atoms. Linearly combining them,
two sets of orthonormal m. o. I1* (for electrons with spin «) and I18 (for electrons
with spin ) can be obtained. The seven molecular orbitals obtained by the
Hiickel method can be used as starting set 77*° and IT*°. Hiickel m.o.s are symme-
tric (8) or antisymmetric (4) with respect to reflection in the symmetry plane of
the molecule. If the m.o. are filled as in the figure, the only rotations to do are:
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1—5;1—7;3—5;3—~7;2—6; 4—6, in the set [[* and 1'—5"; 1'—7';
2 — 4,2 —6;3 —5"; 3 —7, in the set I8 (see Fig. 1).

Satisfying convergence in spin density and energy is reached after few eycles,
as the table shows. In the last column results are reported which have been ob-
tained solving the Hartree-Fock equations (using of course the same values of the
integrals over atomic orbitals; these values and the

results in the last column where kindly supplied by o 7’
Dr. BerraIER). No significant difference between the , y 5
two methods is apparent.

VI. We pass now to discuss the limits of validity & g 5
of the method. Indeed, not always the minimum we . o 4 .

find is the absolute minimum of the energy. It may
happen (as in Roothaan’s method), choosing a diffe- | o g
rent starting point, that a lower value of the energy
is reached. But often the way exists of doing a partial 2 O 4 2
control and a correction on the final set //*. For instan-
ce, in singly filled m.o. wave functions, after having mi- 7 —©— § —6&— 7'
nimized by two by two rotations, it may be that, et IT® ser TP
combining two excited states I, _, p and [T, _, ., we
obtain a state @, _, p; (where b’ is a linear combination
of b and ¢) with a lower energy than the ground state. Then the true ground state
isD, _, p, that is 0', instead of @, must be filled*.

With this new starting set the entire calculation must be repeated. If 3 is the
dimension of our problem, with this correction we may be sure to have found the

Fig. 1

Table

The various steps in the convergence process for an unrestricted doublet wave function
(benzyl molecule). Comparison with Roothaan method.

]

Spin density

Som donsit initial . 3. s 5. by solving
pin density value cycle cycle cycle cycle cycle artree-
| Fock

equations

f

+0.570 | +0.721 | +0.740 | +0.741 | +0.740 | +0.739 +0.742
» +0.000 | -0.118 | -0.134 | 0139 | —0.141 | —0.142 —-0.143

on atom 1
2

- 3 +0.142 +0.188 +0.204 +0.210 +0.212 | +0.213 +0.215
4
5

+0.000 -0.079 —-0.103 -0.4110 + -0.112 -0.113 -0.115
+0.142 | +0473 +0.187 | +04194 | +0.197 | +0199 +0.201

2

Lov;/’ering of ‘
the energy (eV) - ‘ -.17511 ‘ —.18292 [ —.18363‘ —.18373 | —-.18376 | -

absolute minimum; in fact, a 3 by 3 rotation among o, b, and ¢ of the set I1* is
equivalent to C. I. plus an exchange of orbitals (see App. II).

In an » dimensional problem (» > 3) only » by » rotations would give surely
the absolute minimum. They can be done, with the aid of C. I. (analogously as
for n = 3) only in two cases: when the filled orbitals are 1 or » — 1. In these

* If a and b are singly filled and ¢ is empty, and combining @y — . with @» —» . we obtain
a state @ar — . with lower energy than the ground state, the new ground state is that obtained
exchanging a with ¢ and b with a linear combination of @ and b (see App. I1).
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cases the result is not dependent on the starting point. In other cases it is better to
start (as in Roothaan method) with a set as near as possible to the presumed true
minimum.

VII. Excited states. After having found the set /7* which minimize the ground
state @g we can build with the same I7* an excited configuration @z, that is a
wave function orthogonal to @g.

Now, with the method of rotations, we can minimize the energy of @y by a
variation of IT* without destroying orthogonality to the ground state. In fact,
developing the wave function of an excited state @z after two or more successive
rotations on the set I7* as a linear combination of wave functions in J7* it is possi-
ble to see if the ground state @ ¢ ({1*) is mixed or not, that is if @ is orthogonal to
Dq (I1*) as is required for an excited state. Generally some types of pairs of
orbitals exist, whose rotation do not produce a mixing of the ground state, and so
we can minimize @ using only these types of rotations.

The mixing of the ground state depends also on the order of the rotations. If,
for instance, rotations (ab), (cd) do not mix the ground state, it may be that they
mix it in the inverse order (cd), ab).

In the same way excited states of higher energy may be minimized keeping
them orthogonal both to the ground state and to excited states of lower energy.

VIII. Other types of wave functions. The only condition to apply the method
of rotations is that the wave function is a function of an unitary matrix. It can be
applied of course also to minimize the energy of a wave function which is a linear
combination of two or more determinants: this type of wave function is necessary,
for instance, if we want to represent a state with spin multiplicity higher than two.

Appendix I
We show that:

a) d@ (p)jdg = — 2 Y2 GE (9)

b) dD (p)/de = 2 V2 DE ()

¢) 20D (p) + G (¢) + D (p) = const
d) E (p) + G (p) + D (p) = const

e) E (p) — 26D (p) = const

where:
G = (De | H|Da); EQ = (@r | H |De); and so on.

In fact, developing @p (@) and Dz (¢) as Pe (p) in Section IIT we get:
Do {p) = W2 Dp — Y2 uv Pr + v* Dg; Dz () = (U2 — v?) Bz + V2 uv (P — Do)

where
% = COS @} v=ging.
So we find that:

Glp)=utG + 22w v BG + 2w 2 (B +GD) +2y2 wd ED + 2 D

D(@)=u*D —2V2uw*vED +2u0? (F +GD) — 212w BEQ + v G

E@=w+")E +2y2wv - w) (ED - BEG) + 2w (D + G —~ E — 2GD)

EG(p) = w*GE + V2 udv (B +GD — @) + 3uv® (ED — GE) + V2w (D —~F —QD) —v* ED
ED (¢p) = uED V2w v (D ~ E — GD) + 3u2v® (GE —ED) + Y2 w® (E + GD @) —v* GE
GD (p) = (ut + ) GD + V2 (v v — u®) (ED — GE) + w2 * (G + D - 2 E) ;

by means of these six expressions we can obtain easily the a) — e).
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Appendix IT
In part 1. we shall show that a 3 by 3 rotation of two empty orbitals 7,, 7; and one filled
orbital 7z; in a set JT* which minimizes the energy of the ground state can lower the energy
only if a combination exists of the two excited states @,_,, and @,_, , with a lower energy than
D¢ and that the new state of lower energy is obtained placing the electron which was in s, into
a new orbital 7, linear combination of 7, and m,. In part 2 the case of two empty and one
filled orbital is examined.

1. 3 by 3 rotation of one filled orbitel 71, and two empty orbitals 7, and 7,:

3
7[; =% Ci,jﬂj(’i = '1,2, 3)
3=1
8o that
By = 3D + 13Dy + C13Dysy
and
(e | H [@y) = &y (De [H [Pc) + chy (Pyp | H|Drg) + chs (Dyy | H | D)+
+ 205 61 (Do | H [ Pyy) + 2055015 (Po | H|Pys) + 2615 (Prp | H| D),
but after having minimized with two by two rotations
<§DG{H!®12> = <(DG[H|@13> =0
thus we may write
(@ | H |Dy) = (@c | H | Pe) + chadyy + Ay + 2005 (Pyy | H | D)
where
Ay = Dy | H | Du) ~ (Pe | H | De).
It must be (otherwise 3 by 3 rotation is uneffective in lowering the energy)
(D |H | D) < (Be| H|Ds),
that is, the following condition must be satisfied
I=A(clhdyy + Hadyy +2¢505 (D | H [Prg)) <0.
Let us introduce the two new variables cfs, ¢is
ey = ¢y (1 — c%1)_1/2 s s = g (1 — ety
so that
e +eif =1
and we can write
C1p = COS @, cis = sin g ;
“I” will then have the form
I—(1—dyl
where I’ is:
I' = cos2p Ay, +sinpdyy + 2singcos g (P, | H | D).
Introducing the new wave function

D = cos Dy, + sin @ Py,
we see that its energy is
(@v |H|Dv)y =1 +6
that is 7' will be negative only if C. I. between @,_, , and ®,_, , gives a state with lower energy

than the ground state.
If @min is found with the C. L. it follows that

(@B | H | B = @ | H| Do)~ (1 — &) | ' (o) |
has the lowest value for ¢;; = 0;
then
€1 =0; €15 = COS (Pmin); €13 = sin {@mum) ,
that is
7T = €08 (Pmin) Ty + SN (Prin) 7Ty
(as was said in VI).
g%
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2. Combination of one empty orbital 7wy and two filled orbitals r, and m,
D = | 7175 | = (€1 Con — €12 Car) P& + (043 Cag — €15 Car) Py + (012 Ca5 — €15 Cy) Py
or, remembering that C is an unitary matrix,
B = €33 P — €33 Poy + €51 Dy 5
then in the same way as before we get
g =7y
Ty = COS (Pmin) 7Ty + SIN (Prmin) Ty
where @uin is found with C. L.
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